- See Also
-
Links
- “ProofNet: Autoformalizing and Formally Proving Undergraduate-Level Mathematics”, Azerbayev et al 2023
- “MAUD: An Expert-Annotated Legal NLP Dataset for Merger Agreement Understanding”, Wang et al 2023
- “Anime Crop Datasets: Faces, Figures, & Hands”, Gwern et al 2020
- “Goodbooks-10k: a New Dataset for Book Recommendations”, Zajc 2017
-
“
goodbooks-10k
: Ten Thousand Books, Six Million Ratings: Https://fastml.com/goodbooks-10k”, Zajc 2017
- Bibliography
See Also
Links
“ProofNet: Autoformalizing and Formally Proving Undergraduate-Level Mathematics”, Azerbayev et al 2023
ProofNet: Autoformalizing and Formally Proving Undergraduate-Level Mathematics
“MAUD: An Expert-Annotated Legal NLP Dataset for Merger Agreement Understanding”, Wang et al 2023
MAUD: An Expert-Annotated Legal NLP Dataset for Merger Agreement Understanding
“Anime Crop Datasets: Faces, Figures, & Hands”, Gwern et al 2020
“Goodbooks-10k: a New Dataset for Book Recommendations”, Zajc 2017
“goodbooks-10k
: Ten Thousand Books, Six Million Ratings: Https://fastml.com/goodbooks-10k”, Zajc 2017
goodbooks-10k
: Ten thousand books, six million ratings: https://fastml.com/goodbooks-10k
Bibliography
-
https://arxiv.org/abs/2302.12433
: “ProofNet: Autoformalizing and Formally Proving Undergraduate-Level Mathematics”, -
https://fastml.com/goodbooks-10k-a-new-dataset-for-book-recommendations/
: “Goodbooks-10k: a New Dataset for Book Recommendations”,